Google Scholar" />

selected publications

A full list of my publications is available on Google Scholar

2023

  1. Optimizing Hyperparameters with Conformal Quantile Regression
    Salinas, D., Golebiowsk, J., Klein, A., Seeger, M., and Archambeau, C.
    In to appear at the International Conference on Machine Learning (ICML’23) 2023

2022

  1. Syne Tune: A Library for Large Scale Hyperparameter Tuning and Reproducible Research
    Salinas, D., Seeger, M., Klein, A., Perrone, V., Wistuba, M., and Archambeau, C.
    In First Conference on Automated Machine Learning (Main Track) 2022
  2. Automatic Termination for Hyperparameter Optimization
    Makarova, A., Shen, H., Perrone, V., Klein, A., Faddoul, J. B., Krause, A., Seeger, M., and Archambeau, C.
    In First Conference on Automated Machine Learning (Main Track) 2022

2021

  1. BORE: Bayesian Optimization by Density-Ratio Estimation
    Tiao, L., Klein, A., Seeger, M., Bonilla, E., Archambeau, C., and Ramos, F.
    In Proceedings of the 38th International Conference on Machine Learning (ICML’21) 2021
  2. Hyperparameter Transfer Learning with Adaptive Complexity
    Horváth, S., Klein, A., Richtarik, P., and Archambeau, C.
    In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (AISTATS’21) 2021

2019

  1. Meta-Surrogate Benchmarking for Hyperparameter Optimization
    Klein, A., Dai, Z., Hutter, F., Lawrence, N., and Gonzalez, J.
    In Proceedings of the 32th International Conference on Advances in Neural Information Processing Systems (NIPS’19) 2019
  2. NAS-Bench-101: Towards Reproducible Neural Architecture Search
    Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., and Hutter, F.
    In Proceedings of the 36th International Conference on Machine Learning (ICML’19) 2019

2018

  1. BOHB: Robust and Efficient Hyperparameter Optimization at Scale
    Falkner, S., Klein, A., and Hutter, F.
    In Proceedings of the 35th International Conference on Machine Learning (ICML#18) 2018

2017

  1. Learning Curve Prediction with Bayesian Neural Networks
    Klein, A., Falkner, S., Springenberg, J. T., and Hutter, F.
    In International Conference on Learning Representations (ICLR’17) 2017
  2. Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
    Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F.
    In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS’17) 2017

2016

  1. Bayesian Optimization with Robust Bayesian Neural Networks
    Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F.
    In Proceedings of the 29th International Conference on Advances in Neural Information Processing Systems (NIPS’16) 2016

2015

  1. Efficient and Robust Automated Machine Learning
    Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F.
    In Proceedings of the 28th International Conference on Advances in Neural Information Processing Systems (NIPS’15) 2015