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Abstract

Pre-trained language models (PLM), for example BERT or RoBERTa, mark the state-of-the-
art for natural language understanding task when fine-tuned on labeled data. However, their
large size poses challenges in deploying them for inference in real-world applications, due
to significant GPU memory requirements and high inference latency. This paper explores
neural architecture search (NAS) for structural pruning to find sub-parts of the fine-tuned
network that optimally trade-off efficiency, for example in terms of model size or latency, and
generalization performance. We also show how we can utilize more recently developed two-
stage weight-sharing NAS approaches in this setting to accelerate the search process. Unlike
traditional pruning methods with fixed thresholds, we propose to adopt a multi-objective
approach that identifies the Pareto optimal set of sub-networks, allowing for a more flexible
and automated compression process.

1 Introduction

Pre-trained language models (PLMs) such as BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 2019b) are
widely used for natural language understanding (NLU) tasks when large amount of labelled data is available
for fine-tuning. However, deploying PLMs for inference can be challenging due to their large parameter
count. They demand significant GPU memory and exhibit high inference latency, making them impractical
for many real-world applications, for example when used in an end-point for a web service or deployed on an
embedded systems. Recent work (Blalock et al., 2020; Kwon et al., 2022; Michel et al., 2019; Sajjad et al.,
2022) demonstrated that in many cases only a subset of the pre-trained model’s parameters significantly
contributes to the downstream task performance. This allows for compressing the model by pruning parts
of the network while minimizing performance deterioration.

Unstructured pruning (Blalock et al., 2020) computes a score for each weight in the network, such as the
weight’s magnitude, and removes weights with scores below a predetermined threshold. This approach of-
ten achieves high pruning rates with minimal performance degradation, but it also leads to sparse weight
matrices, which are not well-supported by commonly used machine learning frameworks. Structured prun-
ing (Michel et al., 2019; Sajjad et al., 2022) removes larger components of the network, such as layers or
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(a) Extracting sub-networks from pre-trained network. (b) Pareto front of sub-networks.

Figure 1: Illustration of our approach. a) We fine-tune the pre-trained architecture by updating only sub-
networks, which we select by placing a binary mask over heads and units in each MHA and FFN layer. b)
Afterwards, we run a multi-objective search to select the optimal set of sub-networks that balance parameter
count and validation error.

heads. Although it typically does not achieve the same pruning rates as unstructured pruning, it only prunes
entire columns/rows of the weight matrix, making it compatible with popular deep learning frameworks and
hardware.

Neural architecture search (Zoph & Le, 2017; Real et al., 2017; Bergstra et al., 2013) (NAS) finds more
resource efficient neural network architectures in a data-driven way by casting it as an optimization problem.
To reduce the computational burden of vanilla NAS, which needs to train and validate multiple architectures,
weight-sharing-based neural architecture search (Pham et al., 2018; Liu et al., 2019b; Elsken et al., 2018)
first trains a single large network, called the super-network, and then searches for sub-networks within the
super-network.

We propose to use NAS for structural pruning of pre-trained networks, to find sub-networks that sustain
performance of the pre-trained network after fine-tuning (see Figure 1 for an illustration). Most structural
pruning approaches prune the networks based on a predefined threshold on the pruning ratio. In scenarios
where there is no strict constraint on model size, it can be challenging to define such a fixed threshold in
advance. NAS offers a distinct advantage over other pruning strategies by enabling a multi-objective approach
to identify the Pareto optimal set of sub-networks, which captures the nonlinear relationship between model
size and performance instead of just obtaining a single solution. This allows us to automate the compression
process and to select the best model that meets our requirements post-hoc after observing the non-linear
Pareto front, instead of running the pruning process multiple rounds to find the right threshold parameter.

While there is a considerable literature on improving the efficiency of PLMs, to the best of our knowledge
there is no work yet that explored the potential of NAS for pruning fine-tuned PLMs. Our contributions are
the following:

• We discuss the intricate relationship between NAS and structural pruning and present a NAS ap-
proach that compresses PLMs for inference after fine-tuning on downstream tasks, while minimizing
performance deterioration. Our focus lies not in proposing a novel NAS method per se, but rather
in offering a practical use-case for NAS in the context of PLM that works competitively to structural
pruning methods from the literature.

• We propose four different search spaces with varying complexity to prune components of transformer
based PLM and discuss how their definition affect the structure of sub-networks. Two of these search
spaces are typically used by existing structural pruning approaches (see Section 4.2). While one of
these commonly used search spaces exhibits the highest degree of freedom, we show in Section 4.1.1
that a search space with lower complexity can be more efficient to explore and eventually lead to
better performance within a reasonable budget.
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• We contribute a benchmarking suite for multi-objective NAS. We also show how we can apply
recently proposed weight-sharing based NAS methods in this setting. Based on our benchmarking
suite, we perform a thorough ablation study of standard and weight-sharing based NAS. In the long
run we anticipate that our work will drive the development of future NAS methods.

We present an overview of related work in Section 2 and describe our methodology in Section 3. Section 4
provides an empirical comparison of our proposed approach with other structural pruning methods from
the literature, along with an in-depth ablation study. Code is available at https://github.com/whittle-
org/plm_pruning.

2 Related Work

Neural Architecture Search (NAS) (see Elsken et al. (2018) for an overview) automates the design
of neural network architectures to maximize generalization performance and efficiency (e.g., in terms of
latency, model size or memory consumption). The limiting factor of conventional NAS is the computational
burden of the search, which requires multiple rounds of training and validating neural network architectures
(Zoph & Le, 2017; Real et al., 2017). To mitigate this cost, various approaches have been proposed to
accelerate the search process. For example, some of these methods early terminate the training process for
poorly performing configurations (Li et al., 2018) or extrapolating learning curves (White et al., 2021b).
Weight-sharing NAS (Pham et al., 2018; Liu et al., 2019a) addresses the cost issue by training a single
super-network consisting of all architectures in the search space, such that each path represent a unique
architecture. Initially, Liu et al. (2019a) framed this as a bi-level optimization problem, where the inner
objective involves the optimization of the network weights, and the outer objective the selection of the
architecture. After training the super-network, the best architecture is selected based on the shared weights
and then re-trained from scratch. However, several papers (Li & Talwalkar, 2020; Yang et al., 2020) reported
that this formulation heavily relies on the search space and does not yield better results than just randomly
sampling architectures. To address this limitation, Yu et al. (2020) proposed a two-stage NAS process. In
the first stage, the super-network is trained by updating individual sub-networks in each iteration, instead
of updating the entire super-network. After training, the final model is selected by performing gradient-free
optimization based on the shared weights of the super-network, without any further training. Concurrently,
Cai et al. (2020) applies a similar approach for convolutional neural networks in the multi-objective setting
by first training a single super-network and then searching for sub-networks to minimize latency on some
target devices. Related to our work is also the work by Xu et al. (2021), which searches for more efficient
BERT architectures during the pre-training phase.

Structural Pruning involves removing parts of a trained neural network, such as heads (Michel et al., 2019),
or entire layers (Sajjad et al., 2022), to reduce the overall number of parameters while preserving performance.
Individual components are pruned based on a specific scoring function, using a manually defined threshold.
For transformer-based architectures, Michel et al. (2019) observed that a significant number of heads, up to
a single head in a multi-head attention layer, can be deleted after fine-tuning without causing a significant
loss in performance. Voita et al. (2019) proposed L0 regularization as a means to prune individual heads in
a multi-head attention layer. Kwon et al. (2022) prunes individual heads and units in the fully-connected
layers after fine-tuning according to the Fisher information matrix. Sajjad et al. (2022) demonstrated that
it is even possible to remove entire layers of a pre-trained network prior to fine-tuning, with minimal impact
on performance. In comparison to our data-driven approach, Sajjad et al. (2022) suggested using predefined
heuristics (e.g., deleting top / odd / even layers) to determine layers to prune. However, as shown in our
experiments, the appropriate architecture depends on the specific task, and more data-driven methods are
necessary to accurately identify the best layers to prune.

Distillation (Hinton et al., 2015) trains a smaller student model to mimic the predictions of a pre-trained
teacher model. For instance, Sanh et al. (2020) used this approach to distill a pre-trained BERT model (De-
vlin et al., 2019) into a smaller model for fine-tuning. Jiao et al. (2019) proposed a knowledge distillation
approach specifically for transformer-based models, which first distills from a pre-trained teacher into a
smaller model and then performs task-specific distillation in a second step based on a task augmented
dataset. Related to our method is also AdaBERT (Chen et al., 2020) which trains task-specific convolu-
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tional neural networks based on differentiable NAS (Liu et al., 2019a) by distilling the knowledge of a PML
such as BERT.

Unlike pruning-based methods, distillation allows for complete architectural changes beyond merely drop-
ping individual components. However, from a practical standpoint, determining the optimal structure and
capacity of the student network needed to match the performance of the teacher network also amounts to a
hyperparameter and neural architecture search problem. Additionally, training a student network requires
a significant amount of computational resources. For example, the model by Sanh et al. (2020) was trained
for around 90 hours on 8 16GB V100 GPUs. This cost can be amortized by fine-tuning the student model
to solve many different tasks, but, depending on the downstream tasks, it potentially requires a substantial
amount of iterations which is not always desirable for practitioners who aim to solve a single specific task.
This is especially important in the multi-objective setting where many networks need to be distilled to cover
the full size/accuracy Pareto front.

Quantization (Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023) reduces the precision of model pa-
rameters from floating-point numbers to lower bit representations (e.g., 8-bit integers). The main advantage
of quantization is the reduction in memory footprint. However, as we show in the Appendix F, this does not
necessarily lead to faster latency. Quantization is independent of our NAS approach and can be employed
on the pruned network to further decrease memory usage.

3 Structural Pruning via Neural Architecture Search

We first provide a multi-objective problem definition for structural pruning of fine-tuned PLMs via neural
architecture search. Afterwards, we describe how we can apply weight-sharing based NAS. At the end,
we present four search spaces to prune transformer-based architectures, which exhibit a different degree of
pruning.

3.1 Multi-Objective Sub-Network Selection

We consider a pre-trained transformer model based on an encoder-only architecture, such as for example
BERT (Vaswani et al., 2017), with L non-embedding layers, each composed of a multi-head attention (MHA)
layer followed by a fully connected feed forward (FFN) layer. However, all methods presented here can also be
applied to decoder or encoder-decoder based architectures. Given an input sequence X ∈ Rn×dmodel , where
n represents the sequence length and dmodel the size of the token embedding, the MHA layer is defined
by: MHA(X) =

∑H
i Att(W (i)

Q , W
(i)
K , W

(i)
V , W

(i)
O , X) where W

(i)
Q , W

(i)
K , W

(i)
V ∈ Rdmodel×d and W

(i)
O ∈

RHd×dmodel are weight matrices. Att(·) is a dot product attention head (Bahdanau et al., 2015) and H is the
number of heads. The output is then computed by XMHA = LN(X + MHA(X)), where LN denotes layer
normalization (Ba et al., 2016). The FFN layer is defined by FFN(X) = W1σ(W0X), with W0 ∈ RU×dmodel

and W1 ∈ Rdmodel×U , where U denotes the intermediate size and σ(·) is a non-linear activation function.
Also here we use a residual connection to compute the final output: xF F N = LN(XMHA + FFN(XMHA)).

We define a binary mask Mhead ∈ {0, 1}L×H for each head in the multi-head attention layer and a binary
mask Mneuron ∈ {0, 1}L×U for each neuron in the fully-connected layers. The output of the l-th MHA
layer and FFN layer is computed by MHAl(X) =

∑H
i Mhead[i, l]Att(·) and FFNl(X) = W1 ◦Mneuron[l, :

]σ(W0X), respectively, where ◦ denotes element-wise multiplication.

Now, let’s define a search space θ ∈ Θ that contains a finite set of configurations to define possible sub-
networks sliced from the pre-trained network. We define a function CREATEMASK that maps from a configu-
ration θ →Mhead, Mneuron to binary masks. Let’s denote the function f0 : Θ → R as the validation error
of the sub-network defined by configuration θ after fine-tuning on some downstream task. To compute the
validation score induced by θ we place corresponding masks Mhead, Mneuron over the network. Additionally,
we define the total number of trainable parameter f1 : Θ → N of the sub-network. Our goal is to solve the
following multi-objective optimisation problem:

minθ∈Θ(f0(θ), f1(θ)). (1)
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In the multi-objective setting, there is no single θ⋆ ∈ Θ that simultaneously optimizes all M objectives.
Let’s define θ ≻ θ′ iff fi(θ) ≤ fi(θ′),∀i ∈ [M ] and ∃i ∈ [k] : fi(θ) < fi(θ′). We aim to find the Pareto Set:
Pf = {θ ∈ Θ|∄θ′ ∈ Θ : θ′ ≻ θ} of points that dominate all other points in the search space in at least one
objective.

To solve this optimization problem, we can utilize standard multi-objective search methods that are com-
monly used for NAS, such as random search. Here each function evaluation consists of fine-tuning a sub-
network θ initialized with the pre-trained weights instead of random weights. We can also directly adopt
more advanced strategies, such as multi-fidelity NAS, for example MO-ASHA (Schmucker et al., 2021) to
accelerate the search process.

3.2 Weight-sharing based Neural Architecture Search

Following previous work (Yu et al., 2020; Wang et al., 2021), our weight-sharing based NAS approach
consists of two stages: the first stage is to treat the pre-trained model as super-network and fine-tune it on
the downstream task. We explore different super-network training strategies from the literature that update
only parts of the network in each step, to avoid co-adaption of sub-networks. The second stage, utilizes
multi-objective search strategies to approximate the Pareto-optimal set of sub-networks.

3.2.1 Super-Network Training

In the standard NAS setting, we would evaluate f0(θ) by first fine-tuning the sub-network defined by θ on
the training data before evaluating on the validation data. The weights of the sub-network are initialized
based on the pre-trained weights. While more recent NAS approaches (Li & Talwalkar, 2020; Klein et al.,
2020) accelerate the search process by early stopping poorly performing sub-networks, this still amounts to
an optimization process that requires the compute of multiple independent fine-tuning runs.

The idea of two-stage weight-sharing-based NAS (Yu et al., 2020) is to train a single-set of shared weights,
dubbed super-network, that contains all possible networks in the search space. After training the super-
networks, evaluating f0(θ) only requires a single pass over the validation data.

We consider the pre-trained network as super-network with shared weights that contains all possible sub-
networks θ ∈ Θ. To avoid that sub-networks co-adapt and still work outside the super-network, previous
work (Yu et al., 2020; Wang et al., 2021) suggested to update only a subset of sub-networks in each stochastic
gradient descent step, instead of updating all weights jointly. We adapt this strategy and sample sub-networks
according to the sandwich rule (Yu et al., 2020; Wang et al., 2021) in each update step, which always updates
the smallest, the largest and k random sub-networks. The smallest and largest sub-network correspond to
the lower and upper bound of Θ, respectively. For all search spaces Θ define below, the upper bound is
equal to full network architecture, i.e, the super-network and the lower bound removes all layer except the
embedding and classification layer.

Additionally, we use in-place knowledge distillation (Yu et al., 2019) which accelerate the training process of
sub-networks. Given the logits πsupernet(x) of the super-network, which we obtain for free with the sandwich
rule, and the logits of a sub-network πθ(x), the loss function to obtain gradients for the sub-networks follows
the idea of knowledge distillation:

LKD = LCE + DKL

(
σ

(πsupernet

T

)
, σ

(πθ

T

))
, (2)

where DKL(·) denotes the Kullback-Leibler divergence between the logits of the super-network and the sub-
network, T a temperature parameter, σ(·) the softmax function and LCE is the cross-entropy loss of the
training data.

3.2.2 Sub-network selection

After training the super-network, we compute the validation error f0(θ) by applying Mhead and Mneuron

to the shared weights and performing a single pass over the validation data. This substantially reduces the
computational cost involved in the multi-objective problem stated in Equation 1. To solve this problem,
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we essentially can use the same multi-objective approaches as for standard NAS (see Appendix D), except
for multi-fidelity approaches such as MO-ASHA. Multi-fidelity methods early stop the training process by
evaluating the model at intermediate time steps, called rung levels. Since we do not perform any additional
training steps anymore and just evaluate the final sub-network, these rung levels are not defined.

3.3 Search Space

The search space Θ defines sub-networks of the pre-trained network architecture. An expressive Θ allows
for fine-grained pruning but might also become infeasible to explore. We propose the following search spaces
that exhibit different levels of complexity. For each search space we provide pseudo code to define the
CREATEMASK function in Appendix B.

• SMALL: We define the number of heads H = [0, H], the number of units U = [0, U ] and the total
number of layers L = [0, L], such that Θ = H × U × L. Compared to the other search spaces,
the dimensionality of this search space remains fixed with different model sizes, and only its upper
bound i.e. (H, U, L) increases. For each layer, we always keep the first h ∈ H heads and u ∈ U units,
respectively, to enforce that CREATEMASK is a bijective mapping (see Appendix B).

• LAYER: Inspired by Sajjad et al. (2022), we prune individual attention and fully-connected layers
instead of single heads and neurons. We define a search space Θ = {0, 1}L that contains one binary
hyperparameter for each layer that determines if the corresponding layer is removed.

• MEDIUM: Based on the previous search space, we allow for a flexible number of heads / units
per layer. For each layer l ∈ [0, L], we define Hl = [0, H] and Ul = [0, U ], such that the final search
space is Θ = H0 ×U0 . . .HL ×UL. As for the SMALL search space we also keep the first heads and
units in each layer.

• LARGE: For each head and neuron in the fully-connected layer we define a single binary Θi = {0, 1}
which is combined to form the search space Θ = Θ0 × . . . × ΘL(H+I). This is the most expressive
search space, but also grows quickly with the model size. The search space is also commonly used
by other structural pruning approaches (Kwon et al., 2022). It might not be very useful in practice,
because we cannot easily remove single rows/columns of the weight matrix with most transformer
implementations and hence it will not necessarily reduce the inference latency. However, it provides
us a reference in terms of predictive performances that can be retained under a certain pruning ratio.

Each search space induces a different pattern for Mhead and Mneuron that we place over the super-network
to select sub-networks (see Figure 2 for some examples). To see how this effects the distribution over param-
eter count and hence the sampling during the super-network training, we sample N = 500 configurations
{θ0, ..., θN} uniformly at random and compute the number of trainable parameters {f1(θi), ..., f1(θN} for
all four search spaces (see Figure 3). The SMALL search space is somewhat biased to smaller networks. The
MEDIUM search space, even though more expressive, is highly biased towards mid-size networks, since on
average half of the heads / neurons are masked out. For the two binary search spaces LAYER and LARGE,
we can achieve a uniform distribution over the number of parameters, by using the following sampling pro-
cess. We first sample an integer k ∼ U(0, K), where k = L for the LAYER search space, and k = L(H + I)
for the LARGE search space. Afterwards, we randomly select k entries of the binary vector θ ∈ Θ and set
them to 1.

4 Experiments

We evaluate different types of NAS for structural pruning on eight text classification tasks, including textual
entailment, sentiment analysis and multiple-choice question / answering. We provide a detailed description
of each task in Appendix C. All tasks come with a predefined training and evaluation set with labels and
a hold-out test set without labels. We split the training set into a training and validation set (70%/30%
split) and use the evaluation set as test set. We fine-tune every network, sub-network or super-network, for
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Figure 2: Examples of head masks Mhead sampled uniformly at random from different search spaces. Dark
color indicates that the corresponding head is masked. The same pattern can be observed for Mneuron
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Figure 3: Distribution of the parameter count f1(θ) for uniformly sampled θ ∼ Θ.

5 epochs on a single GPU. For all multi-objective search methods, we use Syne Tune (Salinas et al., 2022)
on a single GPU instance. We use BERT-base (Devlin et al., 2019) (cased) and RoBERTa-base (Liu et al.,
2019b) as pre-trained network, which consists of L = 12 layers, I = 3072 units and H = 12 heads (other
hyperparameters are described in Appendix A). While arguably rather small for today’s standards, they still
achieve competitive performance on these benchmarks and allow for a more thorough evaluation. We also
present a comparison to quantization in Appendix F.

4.1 Benchmarking Neural Architecture Search
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y3

Figure 4: Example to compute the Hypervol-
ume HV (Pf |r), corresponding to the sum of
the rectangles, across a reference point r and
a set of points Pf = {y0, y1, y2, y3}

We now present an evaluation of different multi-objective
NAS approaches on our benchmarking suite. To quantify
the performance of a Pareto set Pf , we compute for each
Pareto set the Hypervolume (Zitzler et al., 2003) and report
the regret, i e. the difference to the best possible Hypervol-
ume averaged across all repetitions. Given a reference point
r ∈ RM , the Hypervolume HV (Pf |r) = λ(∪y∈Pf

[y, r]) is de-
fined as the M -th dimensional Lebesgue measure λ between
the Pareto set Pf and the reference point r, where [y, r] rep-
resents the hyper-rectangle between y and r (see Figure 4
for an example).

To compute the Hypervolume, we first normalize each ob-
jective based on all observed values across all methods and
repetitions via Quantile normalization. This results in a uni-
form distribution between [0, 1], and we use r = (2, 2) as
reference point, which means the highest possible Hypervol-
ume would be 4. We evaluate each method with 10 different
seeds for the random number generation.
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4.1.1 Search Space

First, we compare the search spaces definitions from Section 3.3 using weight-sharing based NAS. We fine-
tune the super-network as described in Section 3.2 and sample 100 sub-networks uniformly at random to
compute the hypervolume.

Conclusions: Within this budget (see Figure 5), the SMALL search space achieves the best performance
across all datasets, except for COLA. Interestingly, even though the MEDIUM search space allows for a more
fine-grained per layer pruning, it leads to worse results. We attribute this to the non-uniform distribution
of parameter count as described in Section 3.3. The LAYER search space often out-performs the MEDIUM
and LARGE search space, but, except for COLA, leads to Pareto sets that under-perform compared to
the SMALL search space. The LARGE search space, which is a superset of the other search spaces, seems
infeasible to explore with random sampling over so few observations. We use the SMALL search space for
the remaining experiments.

4.1.2 Standard Neural Architecture Search

We compare the following multi-objective search methods to tackle the NAS problem described in Section 3
where each sub-network is fine-tuned in isolation. We provide a more detailed description of each method
in Appendix D. A simple multi-objective local search (LS) described in Appendix D. This is inspired by
the work of White et al. (2021a), which showed that local search often performs competitively on NAS
problems. Random search (RS) (Bergstra & Bengio, 2012) samples architectures uniformly at random from
the search space. A multi-objective version of the regularized evolution (REA) algorithm (Real et al., 2019),
frequently used in the NAS literature. Compared to the original singe-objective algorithm, we sort elements
in the population via non-dominated sorting. Expected Hypervolume Improvement (EHVI) (Daulton et al.,
2020) is a multi-objective Bayesian optimization strategy that samples candidate points using a Gaussian
process model of the objective function. Lastly, we include MO-ASHA (Schmucker et al., 2021), a multi-
objective version of asynchronous successive halving (Li & Talwalkar, 2020; Jamieson & Talwalkar, 2016) that
terminates the training process of poorly performing candidates early to accelerate the overall optimization
process. While MO-ASHA could potentially be combined with a model-based approach, as commonly done
for single-objective optimization (Falkner et al., 2018; Klein et al., 2020), here we followed the original
algorithm and sample candidate uniformly at random from the search space.

Following common experimental practice from the HPO literature, we aggregate results by computing the
average ranks of each methods across repetitions, datasets and time steps. Following Feurer et al. (2015),
we sample 1000 bootstrap samples across all repetitions and tasks, to compute the rank of each method and
average across all samples. Results are shown in Figure 6a. We shows results for each individual task in
Appendix E.

Conclusions: Somewhat surprisingly RS is a strong baseline on these benchmarks, outperforming more
sophisticated approaches such as EHVI or MO-REA. Fine-tuning these models is often unstable (Mosbach
et al., 2021) especially on smaller datasets, resulting in high observation noise. For the RoBERTa-base model,
LS often performs competitively to RS given a sufficient large budget. MO-ASHA quickly stops the evaluation
of poorly performing sub-networks and hence outperforms RS on average. However, on small datasets such
as RTE, fine-tuning is faster than the non-dominated sorting of MO-ASHA, such that it converges slower
than RS (see Appendix E).

4.1.3 Weight-sharing based Neural Architecture Search

Next, we evaluate different techniques for two-stage NAS for this problem. We distinguish between, fine-
tuning the super-network and multi-objective search.

Super-network fine-tuning: First, we compare the following strategies to fine-tune the super-network
from the literature. To compare these methods, after fine-tuning the super-network, we sample 100 sub-
networks uniformly at random from the SMALL search space to estimate the Pareto set and report here the
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Figure 5: Comparison of the four different search spaces using weight-sharing based NAS. We sample 100
random sub-networks uniformly at random using the fine-tuned weights of the super-network. The SMALL
search space dominates the other search spaces except for the COLA dataset. While SMALL is a subset
of MEDIUM and LARGE, these spaces are too high-dimensional to be explored with a sensible compute
budget. First two rows show results for BERT-base-cased and last two rows for RoBERTa-base.

Hypervolume. We repeat this process 10 times with a different seed for the random number generation. For
each repetition we use the exact same set of random sub-networks for all super-network training strategies.

• standard: Which trains all weights of super-network in the standard fine-tuning setting

• random: Samples a single random sub-network in each update steps

• random-linear: Inspired by Bender et al. (2018), we either sample a random sub-network with
probability p or the full-network with probability of 1−p in each update step. Thereby, p is linearly
increased from 0 to 1 after each update step over the course of training.

• sandwich: The super-network is updated according to the sandwich rule (Yu et al., 2020; Wang
et al., 2021) described in Section 3.2. We set the number of random sub-networks in each update
step to k = 2.
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Figure 6: Average ranks of the different multi-objective search methods across all dataset for a) standard-NAS
and b) weights-sharing based NAS for both BERT-based cased and RoBERTa-base models. Random search
based approaches (RS, MO-ASHA)perform competitively in the standard NAS setting. EHVI outperforms
other methods at earlier time steps which we attribute to its probabilistic model. Given a sufficient amount
of time often finds well-performing Pareto fronts.often finds a well-perofforming Pareto fronts.

• kd: Update k = 2 random sub-networks using in-place knowledge distillation (Yu et al., 2020;
Wang et al., 2021) according to Equation 2.

• full: Implements the training protocol described in Section 3.2, i.e it combines the sandwich rule
with in-place knowledge distillation to update sub-networks.

Conclusions: Figure 7 shows the Hypervolume across all task for BERT-base and RoBERTa-base, re-
spectively. Standard fine-tuning and just randomly sampling a sub-network leads to poorly performing Pareto
sets compared to other methods. The only exception is the COLA dataset, where standard fine-tuning some-
times works best. However, we also observe high variation across runs on this datasets. Linearly increasing
the probability of sampling a random sub-networks improves to just random sampling. Better results are
achieved by using the sandwich rule or knowledge distillation. Thereby, combining both slightly improves
results further.

Multi-Objective Search Lastly, we compare in Figure 6b average ranks of the same multi-objective
search methods as for standard-NAS. We follow the same process as described in Section 4.1.2 to compute
averange ranks. We do not include MO-ASHA in this setting, since each function evaluation only consists of
validating a sub-network based on the shared weights of the super-network after fine-tuning and hence does
not allow for a multi-fidelity approach. Optimization trajectories for all datasets are in Appendix E.

Conclusions: As for standard NAS, RS is a surprisingly strong baseline. EHVI performs better at early
time-steps. We found using the shared weights of the super-networks for evaluation results in a much smaller
observation noise than fine-tuning each sub-network in isolation, which is less deceiving for the probabilistic
model of EHVI. Given enough time, LS starts outperforming RS and EHVI on RoBERTa-base model and
performs competitively to EHVI on the BERT-base model.

4.2 Comparison to other Structural Pruning Approaches

We now present a comparison against other structural pruning approaches. For NAS we use the SMALL
search space defined in Section 3.3 based on our ablation study in Section 4.1. Each method had the same
total amount of wall-clock time and compute, which include both fine-tuning and search. We compare the
following methods:

• Head-Pruning (HP) (Michel et al., 2019) prunes heads greedily using a proxy score for the impor-
tance of each head for final performance based on the gradient of the loss function.

• Retraining Free Pruning (RFP) (Kwon et al., 2022) uses a three-phased pruning strategy that,
based on a threshold α, prunes individual heads in the MHA layer and units in the FFN layer.
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Figure 7: Comparison of different strategies to fine-tune the super-network. First two rows show BERT-base
and last two rows show RoBERTa-base.

The first phase computes a binary mask for heads and units by computing the diagonal Fisher
information matrix. The matrix is then rearranged by a block-approximated Fisher information
matrix. In the last step, the masked is further tuned by minimizing the layer-wise reconstruction
error. This method operates in the LARGE search space described in Section 3.3. We run RFP
with different values for α ∈ {0.1, 0.2, ..., 0.9} to obtain a Pareto set of architectures.

• Layer Dropping (LD): Following Sajjad et al. (2022) we first remove the top n ∈ 1, ..., L− 1 layers
and fine-tune the remaining layers directly on the downstream task. To obtain a Pareto set of N
points, we fine-tune N models with different amount of layers removed. This method serves as a
simple heuristic to explore the LAYER search space.

• Standard NAS (S-NAS): As for the previous experiments, we used standard NAS using random
search where each sub-network is initialized with the pre-trained weights and then fine-tuned inde-
pendently.
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Figure 8: Loss in test performance (the higher the better) versus the parameter count relative to the un-
pruned model on all 8 text classification datasets. First two rows show BERT-base and last two rows show
RoBERTa-base.

• Weight-sharing NAS (WS-NAS): Follows the two-stage weight sharing based NAS approach out-
lined in Section 3.2. We use sandwich rule and in-place knowledge distillation to train the super-
network and EHVI to search for the Pareto optimal set of sub-networks.

To compare results, we normalize the number of parameters to [0, 1] and bin results based on different
thresholds β ∈ {0.2, ...0.9}. Note that roughly 20% of the parameters of BERT-base / RoBERTa-base are
included in the embedding and classification head, and hence cannot be trivially pruned without changing
the embedding dimension or the number of classes. For each bin, we report the best performance of the
solution with ≤ β parameters. We discuss the relationship between parameter count and model inference
time in F.

Figure 8 shows the parameter count (horizontal axis) and the test error (vertical axis) relative to the unpruned
network for all datasets. For reference, we indicate 95% and 90% relative performance to the unpruned
network as well as the original performance by dashed lines. We sort dataset by their size from left to right.

Conclusion: First, both S-NAS and WS-NAS achieve competitive performance to structural pruning meth-
ods. Especially for higher pruning ratios, both S-NAS and WS-NAS outperform RFP and HP even though
they operate in the LARGE search space, which is much higher dimensional than the SMALL search space
used for NAS. This indicates that these methods cannot rigorously handle such high dimensional spaces.
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Second, NAS methods seems to perform better for larger datasets. Given a sufficient amount of budget,
simple LD, which operates in the LAYER search space, also achieves competitive results. This is in-line with
our results in Section 4.1.1, showing that the LAYER search space can still provide sensible results compared
to more expressive search spaces.

WS-NAS substantially reduces the overall runtime by fine-tuning only a single super-network, which enables
it to achieve much better performance with a limited amount of compute compared to S-NAS. However, we
expect S-NAS to outperform WS-NAS if we scale the total compute, since each sub-network if s fine-tuned
in isolation and hence able to optimally adapt to the training data.
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Figure 9: Pareto fronts of single runs for each method for SST2, IMDB and QNLI dataset to balance
parameter-count and test-error (the lower the better).

For a qualitative comparison, we show the results for a single run on three datasets in Figure 9 right. More
example runs are shown in Appendix E.

4.3 Conclusions

We propose NAS for structural pruning of fine-tuned PLMs. By utilising a multi-objective approach, we can
find the Pareto optimal set of sub-networks that balance between model size and validation error. Returning
a Pareto set of sub-networks allows practitioners to select the optimal network without running the pruning
process multiple times with different thresholds. We also provide an in-depth analysis of recently developed
two-stage weight-sharing approaches in this setting, which require only a single fine-tuning run of the PLM.

Future work could explore the instruction tuning (Wei et al., 2022) setting, where the final model is evaluated
in a few-shot setting. Our approach samples sub-networks uniformly at random, which allocates the same
amount of update steps to all sub-networks on average. Future work could explore more complex sampling
distribution biased towards sub-networks closer to the Pareto set.
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A Hyperparameters

Table A shows the hyperparameters for fine-tuning the super-network. We largely follow default hyperpa-
rameters recommended by the HuggingFace transformers library. For all multi-objective search method, we
follow the default hyperparameter of Syne Tune.

Hyperparameter Value
Learning Rate 0.00002
Number of random sub-networks k 2
Temperature T 10
Batch Size 4

B Masking

Algorithm 1, 2, 3 and 4 show pseudo code for the LAYER, SMALL, MEDIUM and LARGE search space,
respectively. Note that, 1 indicates a vector of ones. For a matrix M , we write M [:, : N ] to denote the first
N columns for all rows and, vice versa, M [: N, :] for the first N rows.

input : sub-network configuration θ ∈ {0, 1}L

output: Mhead, Mneuron

Mhead ← [0]L×H ;
Mneuron ← [0]L×I ;
for l = 0, . . . , L− 1 do

Mhead[l, :]← θ[l];
Mneuron[l, :]← θ[l];

end
Algorithm 1: CREATEMASK function for LAYER search space
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input : sub-network configuration θ ∈ H0 × U0 . . .HL × UL

output: Mhead, Mneuron

Mhead ← [0]L×H ;
Mneuron ← [0]L×I ;
for l = 0, . . . , L− 1 do

h = θ[2 ∗ l] ; /* number of heads in layer l */
u = θ[2 ∗ l + 1] ; /* number of units in layer l */
Mhead[l, : h]← 1;
Mneuron[l, : u]← 1;

end
Algorithm 2: CREATEMASK function for MEDIUM search space

input : sub-network configuration θ ∈ H × U × L
output: Mhead, Mneuron

h = θ[0] ; /* number of heads */
u = θ[1] ; /* number of units */
l = θ[2] ; /* number of layers */
Mhead ← [0]L×H ;
Mneuron ← [0]L×I ;
Mhead[: l, : h]← 1;
Mneuron[: l, : u]← 1;

Algorithm 3: CREATEMASK function for SMALL search space

input : sub-network configuration θ ∈ {0, 1}L∗(H+U)

output: Mhead, Mneuron

Mhead ← θ[:, : H];
Mneuron ← θ[:, H :];

Algorithm 4: CREATEMASK function for LARGE search space

C Datasets

We use the following 10 dataset test classification datasets. All dataset are classification tasks, except for
STSB, which is a regression dataset.

• The Recognizing Textual Entailment (RTE) dataset aims to identify the textual entailment of two
sentences.

• The Microsoft Research Paraphrase Corpus (MRPC) dataset consists of sentence pairs extracted
from online news sources. The task is to predicts if these pairs are semantically equivalent to each
other.

• The Semantic Textual Similarity Benchmark (STSB) consists of sentences pairs that are scored
between 1 and 5 based on their similarity.

• The Corpus of Linguistics Acceptability (COLA) dataset contains English sentences that are labeled
as grammatically correct or not.

• The IMDB dataset for sentiment classification (positive / negative) of movie reviews.

• The Stanford Sentiment Treebank (SST2) datasets classifies the positive / negative sentiment of
sentences extracted from movie reviews.

• Situations With Adversarial Generations (SWAG) dataset for multiple-choice question / answering.

• QNLI is a modified version of the Stanford Question Answering Dataset which is a collection of
question / answer pairs where question are written by human annotators and answers are extracted
from Wikipedia. The task is to predict whether the answers is correct.
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D Additional Details NAS Search

In this section, we present more details about all multi-objective search strategies that we used for both
the standard NAS scenario, where each sub-network is fine-tuned from the pre-trained weights, and the
weight-sharing scenario, where sub-networks are evaluated using the shared weights of the super-network.

• Random Search: We follow the standard random search approach (Bergstra & Bengio, 2012),
where for a fixed number of iterations T , we sample in each iteration t ∈ {0, ..., T} a random
sub-networks uniformly from the search space θt ∼ U(Θ).

• MO-Regularized Evolution: We adapt the original algorithm proposed by (Real et al., 2019)
which maintains a population of architectures and, in each iteration, removes the oldest architecture
from the population. To sample a new configuration, we follow Real et al. (2019) and first sample a
set of random configurations and mutate the configuration from the set with the lowest rank. Instead
of just using the validation performance, we rank each element in the population via non-dominated
sorting. We mutate an architecture θ by first sampling a random dimension of the search space
d ∼ U(0, |θ|) and than sample a new value for this dimension θ[d] = U(Θd). This follows the same
process as for our multi-objective local search described below.

• Expected Hypervolume Improvement: Bayesian optimization optimizes a single function
f : Θ → R, where in each iteration t we select the most promising candidate in the input space
θ⋆ ∈ arg max ap(f |Dt)(θ) according to some acquisition function a : Θ → R. The idea of this ac-
quisition function is to trade-off exploration and exploitation, based on a probabilistic model of the
objective function p(f |Dt), trained on some observed data points Dt = {(θ0, y0), ...(θt, yt)}, where
y ∼ N (f, σ). To adapt Bayesian optimization to the multi-objective setting, we follow Daulton et al.
(2020) and use a single Gaussian process p(f |D) for all objective functions f(θ) = {f0(θ), ..., fk(θ)}.
Here, the acquisition function a(θ) = Ep(f |D)[HV I(f(θ)] computes the expected improvement of
the hypervolume HV I(y) = HV (Pf ∪ y, r)−HV (Pf , r) based on the current Pareto front Pf and
some reference point r.

• Multi-Objective ASHA: Given a halving constant η, a minimum rmin and maximum rmax number
of epochs for fine-tuning, successive halving defines a set of rungs R = {rk

min|k = 0, ..., K} where
for simplicity we assume that rmax

rmin
= ηK . Starting from a set of randomly sampled configurations

C = {θ0, ..., θn}, successive halving evaluates all configuration on the first rung level r0 and promotes
the top η−1 configuration for the next rung while discarding the others. This process is iterated
until we reach the maximum rung level rk = rmax. We follow common practice (Li et al., 2017;
Falkner et al., 2018), and run multiple rounds of successive halving until we hit a maximum budget
(defined in wall-clock time). Asynchronous successive halving (Li et al., 2018)adapts standard
successive halving to distributed asynchronous case, which requires some changes in the decision
making routing. To cater for the multi-objective setting, we use multi-objective ASHA (Schmucker
et al., 2021) which uses non-dominated sorting instead of just the validation accuracy to rank
configurations on each rung-level.

• Multi-objective Local Search: Previous work (White et al., 2021a) has demonstrated that simple
local search often performs competitively compared to more advanced NAS methods. We propose
a straightforward multi-objective local search approach. Starting from the current Pareto front Pf ,
which is initialized by some starting point, we randomly sample an element θ⋆ ∼ Pf and then
generate a random neighbor point by permuting a single random entry of θ⋆.
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Figure 10: Single Pareto fronts of random run for each method on all 8 GLUE datasets.

input : Search space Θ, number of iteration T , starting point θstart

output: Pareto front P
/* evaluate starting point */
P0 ← {θstart};
ystart = [f0(θstart), f1(θstart];
Y ← {ystart};
/* main loop */
for t = 1, . . . , T do

/* sample random element from the population */
θt ∼ U(Pt−1);
/* mutate */
d ∼ U(0, |θt|); // sample random dimension
θ̂ ← copy(θt);
θ̂[d]← U(Θd); // sample a new value from the search space
/* evaluate */
yt = [f0(θ̂), f1(θ̂)];
Y ← Y ∪ yt

/* update population */
S(Y ) = {y′ ∈ Y : {y′′ ∈ Y : y′′ ≻ y′, y′ ̸= y′′} = ∅}; // Pareto front
Pt ← {θ : y(θ) ∈ S(Y )};

end
Algorithm 5: Local Search

E Additional Results

In this section we present additional results from the experiments described in Section 4. Figure 10 shows
the Pareto front of randomly chosen runs for each dataset for BERT-base, sorted by the training dataset size.
RTE and MRCP are small datasets compared to other datasets, leading often to an unstable fine-tuning
process.

Figure 11 and 12 shows the optimization trajectories for each methods using standard NAS and weight-
sharing based NAS, respectively. Solid lines indicate the mean and shaded area the standard devication.
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Figure 11: Hypervolume of standard NAS methods on BERT-base-cased (first two rows) and RoBERTa-base
(last two rows).

F Quantization

Quantization (Dettmers et al., 2022; Dettmers & Zettlemoyer, 2023) is a powerful technique that significantly
reduces the memory footprint of neural networks. However, its impact on latency is not immediate, especially
when dealing with batch sizes that can not fit into the cache of the device Dettmers & Zettlemoyer (2023).
With our flexible NAS framework we can simply replace objectives and directly optimize latency on the
target device instead of parameter count.

Figure 13 left shows the Pareto set obtained with our NAS approach, where we optimize latency instead of
parameter count on the COLA dataset across 3 different GPU types. Additionally, we evaluate the perfor-
mance of the unpruned super-network with 8-bit (Dettmers et al., 2022) and 4-bit (Dettmers & Zettlemoyer,
2023) quantization. While quantization substantially reduces the memory footprint (Figure 13 right), it ac-
tually leads to worse latency. While quantization introduces a small overhead due to the additional rounding
steps, the latency could potentially be reduced by optimizing the low-level CUDA implementation. Some-
what surprisingly using a int-8bit quantization leads to high performance drop on some hardware. NAS
effectively reduces the sizes of weight matrices, leading to reduced GPU computation and, thus, is less
hardware depend.

We can also apply quantization to sub-networks, making it orthogonal to our NAS methodology and offering
further improvements to the memory footprint. Overall, these findings shed light on the trade-offs between
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Figure 12: Hypervolume of search methods for weight-sharing based NAS on BERT-base-cased (first two
rows) and RoBERTa-base (last two rows).
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Figure 13: Test error versus memory footprint (left) and latency (right) on 3 different GPU types for the
Pareto front found by our NAS strategy and the un-pruned network with 8bit and 4bit quantization.

memory footprint reduction and latency optimization. We leave it to future work to explore the connection
between NAS and quantization.
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